Single Event Effects (SEE)
Mechanism and Effects

F.Sturesson TEC-QEC
Based on RADECS Short Course 2003 by S.Duzellier
Outline

• Introduction
• Basic Mechanism
• Overview on Non-Destructive Effects
• Overview on Destructive Effects
• Conclusion
Introduction

• SEE is electrical noise induced by the natural space environment (high energy ionising particles)
 – Ionisation mechanism

• Results in data corruption, transient disturbance, high current conditions (non-destructive and destructive effects)

• Affects many types of devices and technologies

• SEE can if not handled well cause unwanted functional interrupts or in worst case catastrophic failures.
Introduction

- Energetic Particles Causing Single Event Effects
 - Galactic cosmic rays
 - Cosmic solar particles (heavily influenced by solar flares)
 - Trapped protons in radiation belts
Outline

- Introduction
- Basic Mechanism
- Overview on Non-Destructive Effects
- Overview on Destructive Effects
- Conclusion
Mechanism for Single Event Effects

Each particle produces an ionization track

Most protons pass through the device with little effect

A few protons cause nuclear reactions

Short-range recoil produces ionization

a) Heavy ions (ionization by each particle)

b) Protons (nuclear reaction needed to produce recoil)

What about e.g. trapped Electrons?

After: A. Johnston, JPL

Space Radiation and its Effects on EEE Components

EPFL Space Center 9th June 2009
Mechanism for Single Event Effects

- Charge Collection
 - Prompt component:
 - drift / funneling
 (high field regions)
 - Delayed component:
 - diffusion
 (low field regions)

After: I. Nashiyama, IEEE TNS, VOL. 40-6, 1993
Mechanism for Single Event Effects

- Charge collections generated in pn-junction typically leads to a shunt effect or bipolar amplification
 - Circuit design and technology dependent

After: I. Nashiyama, IEEE TNS, VOL. 40-6, 1993

After: A. Johnston, JPL
Summary Basic Mechanism

Ionisation from an ion trajectory

Charge Collection Mechanism in pn-junctions

The device type and technology and the localisation and amount of injected charge will define if a SEE will be triggered and the type of the SEE.
Sensitive Volume SV

The volume responsible for charge collection for a SEE

– \(\mu \text{m}^3 \)
Space Radiation and its Effects on EEE Components

SEE Cross Section Curve vs LET

- Cross section (CS or σ) for a SEE measures the probability for a SEE to occur
- The Cross Section is a function of LET
- Below LETth the collected charge in the SV is too low to induce the SEE
- Saturation cross section (CS_{sat} or σ_{sat}) defines the upper limit for SEE.
 - An ion injecting more charge in SV will not increase SEE probability

LET threshold (LETth) and Saturation Cross Section (σ_{sat}) is key measures of Single Event Effects (SEE)
Terms and Units

- **Linear Energy Transfer function** \(\text{LET} \) (or Stopping Power)
 - \(\text{MeV-cm}^2/\text{mg} \)

- LET threshold \(\text{LET}_{\text{th}} \)
 - \(\text{MeV-cm}^2/\text{mg} \)

- Critical Charge \(Q_C \)
 - \(\text{pC} \)

- Cross section \(\text{CS} \) (or \(\sigma \))
 - \(\text{cm}^2 \) or \(\mu\text{m}^2 \)

- Saturation Cross section \(\text{CS}_{\text{sat}} \) (or \(\sigma_{\text{sat}} \))
 - \(\text{cm}^2 \) or \(\mu\text{m}^2 \)

- Sensitive Volume \(SV \)
 - \(\mu\text{m}^3 \)
Overview on Non-Destructive Single Event Effects

• Events which momentary or permanently change state of a device or cell/node without not affecting the functionality.

• Main types
 – Single Event Upsets SEU
 – Single Event Functional Interrupts SEFI
 – Single Event Transients SET
Single Event Upsets SEU

– Change of state in storage element
 • Memory cell
 • Registers
Space Radiation and its Effects on EEE Components

Single Event Upsets SEU

When SEU current I_{SEU} exceeds restoring current from cross-coupled inverter such that the node voltage drops below $V_D/2$ for too long, an upset occurs.

(After Baumann)
Space Radiation and its Effects on EEE Components

Single Event Functional Interrupts SEFI

- Event leading to temporal loss of device functionality
 - Recovered by reset or power cycle
 - Often induced from SEU in Control Registers
Space Radiation and its Effects on EEE Components

Single Event Functional Interrupts (SEFI)

- **Advanced Memories**
 - Internal test modes
 - Microprogrammed cell architecture
- **Flash Memories**
 - Dominant effect
 - “Crashes” internal state controller and buffers
- **Xilinx Programmable Logic Arrays**
- **Microprocessors**
 - Many categories of responses
 - Detection and recovery are very difficult problems

After: JPL course by G. Swift
Single Event Transients SET

- Transients on external signals e.g. comparators
- Internal transients in e.g. CMOS leading to erroneous data
Space Radiation and its Effects on EEE Components

Single Event Transients (SET)

Ion strike in e.g. a comparator

May affect subsequent circuits if not well filtered in design

- Heavy Ions
 - LET = 7.3 MeV·cm²/mg
 - $\Delta V_{\text{in}} = 25$ mV
 - Load Resistor = 1.5 k

After: JPL course by G. Swift
Space Radiation and its Effects on EEE Components

Single Event Transients

Strongly depend on bias condition

Cross section curves for transients in a comparator

![Graph showing cross section curves for transients in a comparator](image)

- **Component Tests**
 - $\Delta V_{OUT} = \{-0.5 \text{ V}, -1 \text{ V}, -1.5 \text{ V}, -2 \text{ V}\}$

- **Circuit Module Tests**
 - $(\Delta V_{OUT} \approx 3 \text{ V})$

- $V_{CC} = 5 \text{ V}$
- Load resistance = 5.1 K
- $\Delta V_{IN} = 2.5 \text{ V}$

After: JPL course by G. Swift
Overview on Destructive Single Event Effects

• Events which interrupt device function and permanently damage the device without external interaction

• Four main types
 – Single Event Latch-up SEL
 – Single Event Burnout SEB
 – Single Event Gate Rupture SEGR
 – Single Event Hard Errors SHE
Single Event Latch-up SEL

Latchup can cause circuit lockup and/or catastrophic device failure

- If an energetic particle produces $I>I_L$, $\beta_n\beta_p>1$ and $V_{DD}>V_H$, then latchup will occur
- As technology scales, soon $V_{DD}<V_H$ and latchup is no longer a problem
- Epi reduces $R_n \Rightarrow$ increase latchup threshold
Space Radiation and its Effects on EEE Components

Single Event Latch-up SEL Facts

- Triggered by heavy ions, protons, neutrons
- May be catastrophic
- Only recovered by power cycle
- SEL is strongly temperature dependent
 - Threshold for latchup decreases at high temperature
 - Cross section increases as well
- Modern devices may have many different latchup paths
 - Both high current and low current SELs can occur
 - Characterization of latchup is a difficult problem for complex circuits

SEL is a critical effect with potential catastrophic impact on space craft systems
 - SEL sensitive components shall as far as possible be avoided
Space Radiation and its Effects on EEE Components

Single Event Latch-up SEL Temperature Dependence

Temperature Dependence of Basic Parameters

- V_{BE} drops from 0.7 to 0.5V at 125 °C
- Well resistance doubles at 125 °C compared to room temperature

Saturation cross section increases with temperature

Threshold LET decreases with temperature

After: JPL course by L. Scheick
Single Event Latch-up SEL Counter Measures

• SEL Detection and Mitigation
 – Current limiting devices can’t stop latch-ups or low current latch-ups
 – Detection circuits can’t stop all latch-ups
 • Some devices have latch-up modes which are always destructive
 – Mitigation may not be fast enough
 – Thorough testing required to ensure that all latch-up events are detected
Single Event Latch-up SEL Technology Options

- **Device type**
 - Bulk CMOS latches worst
 - Commercial off-the-shelf devices (COTS)
 - CMOS deposited on epitaxial layer may improve SEL immunity
 - Some COTS - More Expensive
 - Not always effective (e.g., K-5 processor)
 - SOI and isolated oxides are mostly immune
 - Very expensive
 - Limited availability
Single Event Hard Errors SHE

- Large rare energy depositions can cause individual cells to be unable to change state
 - Referred to as a “stuck bit” in memory
 - This is believed to be a micro-dose effect
 - Micro latch-ups can cause a fraction of bits to be unable to change state
 - Power cycling is required
Single Event Burnout SEB

- **Mechanism:**
 - Localized current in body of device turns on parasitic bipolar transistor
 - Creating direct current path between drain and source
 - Roughly analogous to second breakdown in power transistors
 - Devices with low doping concentrations are most susceptible

- Triggered by heavy ions, and possibly by protons and neutrons

- Always destructive

- CMOS, power BJTs and FETs and MOSFETs can be susceptible
Space Radiation and its Effects on EEE Components

Single Event Gate Rupture SEGR

- Triggered by heavy ions
- Always destructive to device
- Dependent on angle of incidence
- Dependent on electric field in gate oxide
 - May also occur with zero electric field over gate oxide
 - Interplay between pulsed current in drain region and oxide field
- Synergy between TID and SEE
- Power MOSFETs most susceptible
 - Some modern programmable devices are also susceptible
Single Event Effects - Summary

<table>
<thead>
<tr>
<th>Effect</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Event Upset (SEU)</td>
<td>Corruption of the information stored in a memory element</td>
<td>Memories, latches in logic devices</td>
</tr>
<tr>
<td>Multiple Bit Upset (MBU)</td>
<td>Several memory elements corrupted by a single strike</td>
<td>Memories, latches in logic devices</td>
</tr>
<tr>
<td>Single Event Functional Interrupt (SEFI)</td>
<td>Corruption of a data path leading to loss of normal operation</td>
<td>Complex devices with built-in state machine/control sections</td>
</tr>
<tr>
<td>Single Hard Error (SHE)</td>
<td>Unalterable change of state in a memory element</td>
<td>Memories, latches in logic devices</td>
</tr>
<tr>
<td>Single Event Transient (SET)</td>
<td>Impulse response of certain amplitude and duration</td>
<td>Analog and Mixed Signal circuits, Photonics</td>
</tr>
<tr>
<td>Single Event Disturb (SED)</td>
<td>Momentary corruption of the information stored in a bit</td>
<td>Combinational logic, latches in logic devices</td>
</tr>
<tr>
<td>Single Event Latchup (SEL)</td>
<td>High-current conditions</td>
<td>CMOS, BiCMOS devices</td>
</tr>
<tr>
<td>Single Event Snapback (SESB)</td>
<td>High-current conditions</td>
<td>N-channel MOSFET, SOI devices</td>
</tr>
<tr>
<td>Single Event Burnout (SEB)</td>
<td>Destructive burnout due to high-current conditions</td>
<td>BJT, N-channel Power MOSFET</td>
</tr>
<tr>
<td>Single Event Gate Rupture (SEGR)</td>
<td>Rupture of gate dielectric due to high electrical field conditions</td>
<td>Power MOSFETs, Non-volatile NMOS structures, VLSIs, linear devices …</td>
</tr>
</tbody>
</table>

Non Exhaustive, more in ECSS E-ST-10-12C
Conclusion

• SEE is a disturbance in EEE components induced from high energetic particle by ionisation
 – Protons
 • indirect ionisation (mostly)
 – Heavy ions
 • direct ionisation

• SEE can be
 – Destructive (SEL, SEB, SEGR, SHE, etc)
 – Non-Destructive (SEU, SEFI, SET, etc)

• SEE is of major concern for space applications.
 – If not handled well SEE can lead to in worst case catastrophic damage on space crafts.

• Key measures for SEE
 – LET threshold (Energy threshold for protons)
 – Saturation Cross Section
Space Radiation and its Effects on EEE Components

Bibliography

• RADECS short course 2003 Sophie Duzellier, “Component characterisation and Testing; Single Event”
• NSREC Short Course Notes 2005
• ECSS E-ST-10-12C, “Methods for the calculation of radiation received and its effects, and a policy for design margins”, http://www.ecss.nl/